УРАН: описание металла, свойства, сферы применения и месторождения

Уран – химический элемент семейства актиноидов с атомным номером 92. Является важнейшим ядерным топливом. Его концентрация в земной коре составляет около 2 частей на миллион.

К важным урановым минералам относятся окись урана (U3O8), уранинит (UO2), карнотит (уранил-ванадат калия), отенит (уранил-фосфат калия) и торбернит (водный фосфат меди и уранила).

Эти и другие урановые руды являются источниками ядерного топлива и содержат во много раз больше энергии, чем все известные извлекаемые месторождения ископаемого топлива. 1 кг урана 92U дает столько же энергии, сколько 3 млн кг угля.

История открытия

Химический элемент уран – плотный, твердый металл серебристо-белого цвета. Он пластичный, ковкий и поддается полировке. В воздухе метал окисляется и в измельченном состоянии загорается. Относительно плохо проводит электричество. Электронная формула урана – 7s2 6d1 5f3.

Хотя элемент был обнаружен в 1789 г. немецким химиком Мартином Генрихом Клапротом, который назвал его в честь недавно открытой планеты Уран, сам металл был изолирован в 1841 г. французским химиком Эженом-Мельхиором Пелиго путем восстановления из тетрахлорида урана (UCl4) калием.

УРАН: описание металла, свойства, сферы применения и месторождения

Радиоактивность

Создание периодической системы российским химиком Дмитрием Менделеевым в 1869 году сосредоточило внимание на уране как на самом тяжелом из известных элементов, которым он оставался до открытия нептуния в 1940 г. В 1896-м французский физик Анри Беккерель обнаружил в нем явление радиоактивности.

Это свойство позже было найдено во многих других веществах. Теперь известно, что радиоактивный во всех его изотопах уран состоит из смеси 238U (99,27 %, период полураспада — 4 510 000 000 лет), 235U (0,72 %, период полураспада — 713 000 000 лет) и 234U (0,006 %, период полураспада — 247 000 лет).

Это позволяет, например, определять возраст горных пород и минералов для изучения геологических процессов и возраста Земли. Для этого в них измеряется количество свинца, который является конечным продуктом радиоактивного распада урана. При этом 238U является исходным элементом, а 234U – один из продуктов.

235U порождает ряд распада актиния.

Химический элемент уран стал предметом широкого интереса и интенсивного изучения после того, как немецкие химики Отто Хан и Фриц Штрассман в конце 1938 г. при его бомбардировке медленными нейтронами обнаружили в нем ядерное деление. В начале 1939 г.

американский физик итальянского происхождения Энрико Ферми предположил, что среди продуктов расщепления атома могут быть элементарные частицы, способные породить цепную реакцию. В 1939 г.

американские физики Лео Сциллард и Герберт Андерсон, а также французский химик Фредерик Жолио-Кюри и их коллеги подтвердили это предсказание. Последующие исследования показали, что в среднем при делении атома высвобождается 2,5 нейтрона. Эти открытия привели к первой самоподдерживающейся цепной ядерной реакции (02.12.

1942), первой атомной бомбе (16.07.1945), первому ее использованию в ходе военных действий (06.08.1945), первой атомной подводной лодке (1955) и первой полномасштабной атомной электростанции (1957).

УРАН: описание металла, свойства, сферы применения и месторождения

Состояния окисления

Химический элемент уран, являясь сильным электроположительным металлом, реагирует с водой. Он растворяется в кислотах, но не в щелочах. Важными состояниями окисления являются +4 (как в оксиде UO2, тетрагалогенидах, таких как UCl4, и зеленом водном ионе U4+) и +6 (как в оксиде UO3, гексафториде UF6 и ионе уранила UO22+).

В водном растворе уран наиболее устойчив в составе иона уранила, обладающего линейной структурой [О = U = О]2+. Элемент также имеет состояния +3 и +5, но они неустойчивы. Красный U3+ медленно окисляется в воде, которая не содержит кислорода.

Цвет иона UO2+ неизвестен, поскольку он претерпевает диспропорционирование (UO2+ одновременно сводится к U4+ и окисляется до UO22+) даже в очень разбавленных растворах.

Ядерное топливо

При воздействии медленных нейтронов деление атома урана происходит в относительно редком изотопе 235U. Это единственный природный расщепляющийся материал, и он должен быть отделен от изотопа 238U.

Вместе с тем после поглощения и отрицательного бета-распада уран-238 превращается в синтетический элемент плутоний, который расщепляется под действием медленных нейтронов.

Поэтому природный уран можно использовать в реакторах-преобразователях и размножителях, в которых деление поддерживается редким 235U и одновременно с трансмутацией 238U производится плутоний.

Из широко распространенного в природе изотопа тория-232 может быть синтезирован делящийся 233U для использования в качестве ядерного топлива. Уран также важен как первичный материал, из которого получают синтетические трансурановые элементы.

УРАН: описание металла, свойства, сферы применения и месторождения

Другие применения урана

Соединения химического элемента ранее использовались в качестве красителей для керамики.

Гексафторид (UF6) представляет собой твердое вещество с необычно высоким давлением паров (0,15 атм = 15 300 Па) при 25 °C.

UF6 химически очень реактивный, но, несмотря на его коррозионную природу в парообразном состоянии, UF6 широко используется в газодиффузионных и газоцентрифужных методах получения обогащенного урана.

Металлоорганические соединения представляют собой интересную и важную группу соединений, в которых связи металл-углерод соединяют металл с органическими группами.

Ураноцен является органоураническим соединением U(С8Н8)2, в котором атом урана зажат между двумя слоями органических колец, связанными с циклооктатетраеном C8H8. Его открытие в 1968 г.

открыло новую область металлоорганической химии.

Обедненный природный уран применяется в качестве средства радиационной защиты, балласта, в бронебойных снарядах и танковой броне.

Переработка

Химический элемент, хотя и очень плотный (19,1 г/см3), является относительно слабым, невоспламеняющимся веществом.

Действительно, металлические свойства урана, по-видимому, позиционируют его где-то между серебром и другими истинными металлами и неметаллами, поэтому его не используют в качестве конструкционного материала.

Основная ценность урана заключается в радиоактивных свойствах его изотопов и их способности делиться. В природе почти весь (99,27 %) металл состоит из 238U. Остальную часть составляют 235U (0,72 %) и 234U (0,006 %).

Из этих естественных изотопов только 235U непосредственно расщепляется нейтронным облучением. Однако при его поглощении 238U образует 239U, который в конечном итоге распадается на 239Pu – делящийся материал, имеющий большое значение для атомной энергетики и ядерного оружия. Другой делящийся изотоп, 233U, может образоваться нейтронным облучением 232Th.

УРАН: описание металла, свойства, сферы применения и месторождения

Кристаллические формы

Характеристики урана обусловливают его реакцию с кислородом и азотом даже в нормальных условиях. При более высоких температурах он вступает в реакцию с широким спектром легирующих металлов, образуя интерметаллические соединения.

Образование твердых растворов с другими металлами происходит редко из-за особых кристаллических структур, образованных атомами элемента. Между комнатной температурой и температурой плавления 1132 °C металлический уран существует в 3 кристаллических формах, известных как альфа (α), бета (β) и гамма (γ).

Трансформация из α- в β-состояние происходит при 668 °C и от β до γ – при 775 °C. γ-уран имеет объемноцентрированную кубическую кристаллическую структуру, а β – тетрагональную. α-фаза состоит из слоев атомов в высокосимметричной орторомбической структуре.

Эта анизотропная искаженная структура препятствует атомам легирующих металлов заменять атомы урана или занимать пространство между ними в кристаллической решетке. Обнаружено, что твердые растворы образуют только молибден и ниобий.

Руды

Земная кора содержит около 2 частей урана на миллион, что говорит о его широком распространении в природе. По оценкам, океаны содержат 4,5 × 109 т этого химического элемента.

Уран является важной составляющей более чем 150 различных минералов и второстепенным компонентом еще 50. Первичные минералы, обнаруженные в магматических гидротермальных жилах и в пегматитах, включают уранинит и его разновидность настуран.

В этих рудах элемент встречается в форме диоксида, который вследствие окисления может варьироваться от UO2 до UO2,67.

Другой экономически значимой продукцией урановых рудников являются аутунит (гидратированный уранилфосфат кальция), тобернит (гидратированный уранилфосфат меди), коффинит (черный гидратированный силикат урана) и карнотит (гидратированный уранил-ванадат калия).

По оценкам, более 90 % известных недорогих запасов урана приходится на Австралию, Казахстан, Канаду, Россию, Южную Африку, Нигер, Намибию, Бразилию, КНР, Монголию и Узбекистан.

Большие месторождения находятся в конгломератных скальных образованиях озера Эллиот, расположенного к северу от озера Гурон в Онтарио, Канада, и в южноафриканском золотом прииске Витватерсранде.

Песчаные образования на плато Колорадо и в Вайомингском бассейне западной части США также содержатся значительные запасы урана.

УРАН: описание металла, свойства, сферы применения и месторождения

Добыча

Урановые руды встречаются как в приповерхностных, так и глубоких (300–1200 м) отложениях. Под землей мощность пласта достигает 30 м.

Читайте также:  Апатит: магические и целебные свойства, кому подходит по знаку зодиака, значение и где используется камень

Как и в случае с рудами других металлов, добыча урана на поверхности производится крупным землеройным оборудованием, а разработка глубоких отложений – традиционными методами вертикальных и наклонных шахт. Мировое производство уранового концентрата в 2013 г. составило 70 тыс. т.

Наиболее продуктивные урановые рудники расположены в Казахстане (32 % всей добычи), Канаде, Австралии, Нигере, Намибии, Узбекистане и России.

Урановые руды обычно включают лишь небольшое количество ураносодержащих минералов, и они не поддаются плавке прямыми пирометаллургическими методами. Вместо этого для извлечения и очистки урана должны использоваться гидрометаллургические процедуры.

Повышение концентрации значительно снижает нагрузку на контуры обработки, но ни один из обычных способов обогащения, обычно используемых для переработки полезных ископаемых, например гравитационный, флотация, электростатический и даже ручная сортировка, неприменимы.

За немногими исключениями эти методы приводят к значительной потере урана.

Обжиг

Гидрометаллургической обработке урановых руд часто предшествует высокотемпературная стадия кальцинирования. Обжиг обезвоживает глину, удаляет углеродистые материалы, окисляет соединения серы до безобидных сульфатов и окисляет любые другие восстановители, которые могут мешать последующей обработке.

УРАН: описание металла, свойства, сферы применения и месторождения

Выщелачивание

Из обожженных руд уран извлекается как кислотными, так и щелочными водными растворами. Для успешного функционирования всех систем выщелачивания химический элемент должен либо первоначально присутствовать в более стабильной 6-валентной форме, либо окисляться до этого состояния в процессе обработки.

Кислотное выщелачивание обычно проводят путем перемешивания смеси руды и выщелачивателя в течение 4-48 ч при температуре окружающей среды. За исключением особых обстоятельств используется серная кислота. Ее подают в количествах, достаточных для получения конечного щелока при рН 1,5.

Схемы выщелачивания серной кислоты обычно используют либо диоксид марганца, либо хлорат для окисления четырехвалентного U4+ до 6-валентного уранила (UO22+). Как правило, для окисления U4+ достаточно примерно 5 кг двуокиси марганца или 1,5 кг хлората натрия на тонну.

В любом случае окисленный уран реагирует с серной кислотой с образованием уранилсульфатного комплексного аниона [UO2(SO4)3]4-.

Руда, содержащая значительное количество основных минералов, таких как кальцит или доломит, выщелачивается 0,5-1-молярным раствором карбоната натрия. Хотя были изучены и протестированы различные реагенты, основным окислителем урана является кислород.

Обычно руда выщелачиваются на воздухе при атмосферном давлении и при температуре 75-80 °C в течение периода времени, который зависит от конкретного химического состава.

Щелочь реагирует с ураном с образованием легкорастворимого комплексного иона [UO2(СО3)3]4-.

Перед дальнейшей обработкой растворы, образующиеся в результате кислотного или карбонатного выщелачивания, должны быть осветлены. Крупномасштабное разделение глин и других рудных шламов осуществляется за счет использования эффективных хлопьеобразующих агентов, в том числе полиакриламидов, гуаровой смолы и животного клея.

Экстракция

Сложные ионы [UO2(СО3)3]4- и [UO2(SO4)3]4- могут быть сорбированы из их соответствующих выщелачивающих растворов ионообменных смол.

Эти специальные смолы, характеризующиеся кинетикой их сорбции и элюирования, размером частиц, стабильностью и гидравлическими свойствами, могут использоваться в различных технологиях обработки, например в неподвижном и подвижном слое, методом ионообменной смолы в пульпе корзинного и непрерывного типа. Обычно для элюирования сорбированного урана используют растворы хлорида натрия и аммиака или нитратов.

УРАН: описание металла, свойства, сферы применения и месторождения

Уран можно выделить из кислых рудных щелоков путем экстракции растворителем. В промышленности используются алкилфосфорные кислоты, а также вторичные и третичные алкиламины. Как правило, экстракция растворителем предпочтительна по сравнению с ионообменными методами для кислотных фильтратов, содержащих более 1 г/л урана. Однако этот метод не применяется при карбонатном выщелачивании.

Затем уран очищают, растворяя в азотной кислоте с образованием уранилнитрата, экстрагируют, кристаллизуют и прокаливают с образованием трехокиси UO3. Восстановленный диоксид UO2 реагирует с фтористым водородом с образованием тетафторида UF4, из которого металлический уран восстанавливается магнием или кальцием при температуре 1300 °C.

Тетрафторид можно фторировать при температуре 350 °C до образования гексафторида UF6, используемого для отделения обогащенного урана-235 методом газовой диффузии, газового центрифугирования или жидкой термодиффузии.

Урановая руда: свойства, применение, добыча

УРАН: описание металла, свойства, сферы применения и месторождения Полезные ископаемые — урановая руда

В последние несколько все большей актуальности набирает тема ядерной энергетики.

Для производства атомной энергии принято использовать такой материал, как уран. Он представляет собой химический элемент, относящийся к семейству актинидов.

Химическая активность этого элемента обуславливает тот факт, что он не содержится в свободном виде. Для его производства используются минеральные образования под названием урановые руды.

В них концентрируется такое количество топлива, которое позволяет считать добычу этого химического элемента экономически рациональной и выгодной. На данный момент в недрах нашей планеты содержание этого металла превышает запасы золота в 1000 раз (см. Всё о добыче золота. Где и как добывается золото?).

В целом залежи данного химического элемента в грунте, водной среде и горной породе оцениваются в более чем 5 миллионов тонн.

Российская разработка, позволяющая добывать золото из каменного угля

Свойства урана

В свободной состоянии уран представляет собой серо-белый металл, которому свойственно 3 аллотропических модификации: ромбическая кристаллическая, тетрагональная и объемно центрированная кубическая решетки. Температура кипения этого химического элемента составляет 4200 °C.

Уран является химическим активным материалом. На воздухе этот элемент медленно окисляется, легко растворяется в кислотах, реагирует с водой, но при этом не взаимодействует с щелочами.

УРАН: описание металла, свойства, сферы применения и месторожденияУрановая руда

Урановая руда: характеристики и классификации

Урановые руды в России принято классифицировать по различным признакам. Чаще всего они различаются условиями образования. Так, существуют эндогенные, экзогенные и метаморфогенные руды.

В первом случае они представляют собой минеральные образования, сформировавшиеся под воздействием высоких температур, влажности и пегматитовых расплавов. Экзогенные урановые минеральные образования возникают в поверхностных условиях. Они могут формироваться непосредственно на поверхности земли.

Это происходит из-за циркуляции подземных вод и накопления осадков. Метаморфогенные минеральные образования появляются, как результат перераспределения первично разнесенного урана.

В соответствии с уровнем содержания урана, эти природные образования могут быть:

  • супербогатыми (свыше 0,3%);
  • богатыми (от 0,1 до 0,3%);
  • рядовыми (от 0,05 до 0,1%);
  • убогими (от 0,03 до 0,05%);
  • забалансовыми (от 0,01 до 0,03%).

Современное применение урана

УРАН: описание металла, свойства, сферы применения и месторожденияСлиток из урана

Сегодня уран чаще всего используется в качестве топлива для ракетных двигателей и ядерных реакторов. Учитывая свойства этого материала, он также предназначен для повышения мощности ядерного орудия. Этот химический элемент также нашел свое применение в живописи. Его активно применяют в качестве желтого, зеленого, бурого и черного пигментов. Уран также используется для производства сердечников для бронебойных снарядов.

Мирный атом: дорога в никуда или светлое будущее?

Добыча урановой руды в России: что для этого необходимо?

УРАН: описание металла, свойства, сферы применения и месторожденияДобыча урановой руды открытым способом

Добыча радиоактивных руд осуществляется тремя основными технологиями. Если залежи руды сконцентрированы максимально близко к поверхности земли, то для их добычи принято использовать открытую технологию. Она предусматривает использование бульдозеров и экскаваторов, которые роют ямы большого размера и грузят полученные полезные ископаемые в самосвалы. Далее она отправляется в перерабатывающий комплекс.

При глубоком залегании этого минерального образования принято использовать подземную технологию добычи, предусматривающую создание шахты глубиной до 2-х километров. Третья технология существенно отличается от предыдущих. Подземное выщелачивание для разработки месторождений урана предполагает бурение скважин, через которые в залежи закачивается серная кислота.

Далее осуществляется бурение еще одной скважины, которая необходима для выкачивания полученного раствора на поверхность земли. Затем он проходит процесс сорбции, позволяющий собрать соли этого металла на специальной смоле. Последний этап технологии СПВ – циклическая обработка смолы серной кислотой.

Благодаря такой технологии концентрация этого металла становится максимальной.

Месторождения урановых руд в России

Россия считается одним из мировых лидеров по добыче урановых руд. На протяжении последних нескольких десятков лет Россия стабильно входит в топ-7 стран-лидеров по этому показателю.

Наиболее крупными месторождениями этих природных минеральных образований являются:

Месторождение Область Запасы чистого урана, тонн Комментарий
Аргунское Читинская область 9481 Самое крупное российское месторождение. Дает 93% от общего объема добычи.
Жерловое Читинская область 3485 Общие запасы оценивают в 4137 тысяч тонн.
Хиагдинское Бурятия 11300  Разработка месторождений проходит методом подземного выщелачивания. Хиагдинское поле состоит из 8 месторождений.

Крупнейшие месторождения по добыче урана в мире – страны лидеры

УРАН: описание металла, свойства, сферы применения и месторожденияДобыча урановой руды в шахте

Мировым лидером по добыче урана считается Австралия. В этом государстве сконцентрировано более 30% всех мировых запасов. Наиболее крупными австралийскими месторождениями являются Олимпик Дам, Биверли, Рейнджер и Хонемун.

Читайте также:  БАРИЙ: описание металла, свойства, сферы применения и месторождения

Что такое руда? Какие виды руды бывают? Как её добывают? Страны-лидеры по добыче руды

Главным конкурентом Австралии считается Казахстан, на территории которого содержится практически 12% мировых запасов топлива. На территории Канады и ЮАР сконцентрировано по 11% мировых запасов урана, в Намибия – 8%, Бразилии – 7%. Россия замыкает семерку лидеров с 5%. В список лидеров также входят такие страны, как Намибия, Украина и Китай.

Крупнейшими мировыми урановыми месторождениями являются:

Месторождение Страна Начало обработки
Олимпик-Дэм Австралия 1988
Россинг Намибия 1976
МакАртур-Ривер Канада 1999
Инкай Казахстан 2007
Доминион ЮАР 2007
Рейнджер Австралия 1980
Харасан Казахстан 2008

Запасы и объемы добычи урановой руды в России

Разведанные запасы урана в нашей стране оцениваются в более чем 400 тысяч тонн. При этом показатель прогнозируемых ресурсов составляет более 830 тысяч тонн.

По состоянию на 2017 год в России действует 16 урановых месторождений. Причем 15 из них сосредоточены в Забайкалье. Главным месторождением урановой руды считается Стрельцовское рудное поле.

В большинстве отечественных месторождениях добыча осуществляется шахтным способом.

Интересные факты об урановой руде

  • Уран был открыт еще в XVIII веке. В 1789 году немецкий ученый Мартин Клапрот сумел произвести из руды металлоподобный уран. Что интересно, этот ученый также является первооткрывателем титана и циркония.
  • Соединения урана активно используют в сфере фотодела. Этот элемент применяется для окрашивания позитивов и усиления негативов.
  • Главным отличием урана от других химических элементов является естественная радиоактивность. Атомы урана имеют свойство самостоятельно изменяться с течением времени. При этом они испускают лучи, невидимые глазу человека. Эти лучи делятся на 3 вида – гамма-, бета- альфа-излучения (см. Что такое радиация? Действие радиации на организм. Характеристика зон радиоактивного заражения.).

Уран: свойства, способы добычи и обогащения, применение

Процесс открытия минерала и дальнейшее исследование его уникальных в физическом отношении свойств, напрямую связано с именами множества исследователей и учёных того времени. Среди которых можно выделить:

  • Немецкого натурфилософа Мартина Генриха Клапорта первым, восстановившим из руды один из наиболее распространённых минералов урана – настуран.
  • Французского химика ЭженаПелиго, сумевшего получить чистый минерал и определить его атомный вес.
  • Великого русского учёного Дмитрия Ивановича Менделеева – поставившего уран в соответствующую его характеристикам клетку периодической системы, задолго до открытия действительного атомного веса этого элемента.
  • Знаменитого британского физика Эрнеста Резерфорда, открывшего два вида радиоактивного излучения урана.
  • Советских академиков Юлия Борисовича Харитона и Якова Борисовича Зельдовича, доказавших возможность осуществления цепной ядерной реакции.

Естественно, что свой вклад в исследование этого основополагающего элемента ядерной физики и атомной энергетики, внесло множество учёных. Именно благодаря им были открыты следующие физико-химические свойства этого элемента:

  • Тяжёлый, гибкий и ковкий металл, плотностью 18-19 г/см3.
  • Температура плавления равняется +1132,30C.
  • Температура кипения составляет +41130C.
  • В порошкообразном состоянии при температуре свыше +1500C, уран способен самовозгораться.
  • Обладает тремя кристаллическими модификациями, стабильными при определённых температурах: альфа, бета и гамма.
  • Минерал радиоактивен изотопами: уран-238, уран-235, уран-234.
  • Химически очень активный элемент, быстро вступающий в реакцию взаимодействия с кислородом воздуха, покрываясь при этом защитной оксидной плёнкой.

Способы добычи

Уран распространён в природе. По этому показателю он занимает 38 место среди других химических элементов. Больше всего этот радиоактивный металл сосредоточен в осадочных породах: углистых сланцах и фосфоритах. Наиболее важными для добычи минералами (всего их, имеющих промышленное значение, насчитывается 15 видов) являются:

  • настуран,
  • карнотит,
  • соединения с ванадием и титаном,
  • силикаты,
  • фосфаты.

Метод извлечения урана на поверхность зависит от глубины залегания руд, породы месторасположения, состава изотопов и ряда иных признаков.

УРАН: описание металла, свойства, сферы применения и месторождения

Открытый

Один из самых распространённых способов добычи полезных ископаемых при условии размещения их недалеко от наружного слоя земного грунта.

Именно его и приходится удалять, прибегая к вскрышным буровзрывным работам и перевозке пустой породы в отвалы. Для чего используется тяжёлая техника: бульдозеры, экскаваторы, погрузчики самосвалы. В дальнейшем с использованием того же оборудования разрабатывается ураносодержащее сырьё, затем отправляемое на переработку.

Строительство карьеров – дело достаточно дорогостоящее и объёмное по своим масштабам и привлекаемым ресурсам. Кроме того, оно связано с нанесением невосполнимого экологического ущерба месту разработки и окружающей местности.

Подземный

Способ ещё более затратный по сравнению с открытым методом, так как приходится проникать внутрь недр, чтобы достичь места залегания рудного тела. Другим неблагоприятным фактором является экономическое ограничение на строительство шахт, глубиной более 2 км, что нецелесообразно в связи со значительным удорожанием стоимости добытого минерального ресурса.

Однако, несмотря на эти обстоятельства и высокий уровень опасности для работающего персонала, именно этот способ позволяет добывать наиболее качественное сырьё. Технологический цикл подземной добычи включает в себя:

  • откалывание (отбивание) материала,
  • погрузку его на вагонетки или шахтные самосвалы,
  • перевозку руды до бункера приёмки,
  • скиповое поднятие на поверхность,
  • транспортировку к местам переработки.

Скважинное подземное выщелачивание

В связи с множеством возникающих сложностей организационного и экономического порядка, всё чаще горнодобывающие предприятия начинают прибегать к методу скважинного подземного выщелачивания (СПВ).

Проведя геологические исследования, определяется контур месторождения, по периметру которого на необходимую глубину бурятся скважины. В них закачивается серная кислота – выщелачивающий реагент. Полученный раствор выкачивают уже через откачные скважины, пробуренные внутри контура.

Извлекаемую пульпу прогоняют через специальные сорбционные колонны, где урановые соли остаются на смоляных поверхностях. В дальнейшем эту смесь подвергают многократной очистке до получения сначала необходимой концентрации раствора, а затем – и до формирования закиси-окиси урана.

Обогащение урана

Добытая урановая руда содержит в своём составе 0,72% изотопов урана-235 (235U). Остальную часть составляют:

  • Уран-238 – 99,2745%.
  • Уран-234 – 0,0055%.

Причины

Самостоятельно поддерживать ядерную реакцию способен только нуклид 235U. Мало того, чтобы цепная реакция происходила стабильно – не важно: в ядерном реакторе или в атомном оружии – необходимо достичь его определённой концентрации, тем самым обеспечив высокую вероятность встречи нейтронов с атомами.

Именно для этого и проводится обогащение, то есть увеличение доли урана-235 в минерале. Однако, требуемый уровень концентрации этого изотопа в каждой из областей применения – свой.

УРАН: описание металла, свойства, сферы применения и месторождения

Степени

Практическое применение имеют три степени обогащения урана, имеющие соответствующие процентному содержанию названия:

  • Обеднённый уран представляет собой технологические отходы процесса обогащения. Содержание 235U в нём колеблется в пределах: 0,1–0,3 %. Тем не менее, постепенно он находит широкий диапазон применения в качестве:
  • химического катализатора в реакциях восстановления перекиси водорода и кислорода;
  • космического, судового, автомобильного балласта и самолётного противовеса;
  • средства радиационной защиты;
  • бронебойного сердечника снарядов;
  • танковой брони;
  • ударного механизма буровых штанг,
  • средства получения комплексного ядерного топлива, применение которого возможно в энергетических ядерных реакторах на тепловых нейронах.
  • Низкообогащённый уран с концентрацией 235U доходящей до 20%, широко используется в качестве топлива энергетических и научно-исследовательских ядерных реакторов.
  • Высокообогащённый уран, содержащий в себе свыше 20% урана-235, применяется при изготовлении атомных и водородных бомб, а также в качестве длительно используемого ядерного топлива в реакторах морских судов и космических кораблей.

Технологии

В основе значительного количества технологий обогащения лежат стандартные физические процессы обретения различного ускорения телами, обладающими разной массой. Именно на этом принципе основано абсолютное большинство апробированных обогатительных методов.

  • Термодиффузия – концентрирующая различные по массе изотопы в отдельных температурных зонах.
  • Электромагнитная сепарация – отбирающая разно заряженные ионы в отдельные сборники.
  • Газовая диффузия – использующая неодинаковую скорость проникновения частиц через мелкопористые мембраны.
  • Центрифугирование – разделяющее газовую среду по скоростям вращающихся потоков.
  • Аэродинамическая сепарация – создающая завихряющиеся потоки в соплах искривлённой конфигурации.

Существует также целый ряд лазерных технологий, пока что не получивших широкой промышленной эксплуатации.

Применение

Ядерное топливо

Основным направлением использования всех видов изотопов металлического урана является атомная энергетика. Именно в ядерных реакторах происходит регулируемая цепная реакция, позволяющая вырабатывать гигантские электрические мощности. Причём применение находит как низкообогащённый, так и высокообогащённый уран (в реакторах на быстрых нейтронах).

Геология

Геохронологическое использование урана (уран-свинцовый метод радиоизотопного датирования) даёт возможность определять возраст геологических пород и минералов. Это открывает широкие перспективы для исследования протекания геологических процессов в недрах нашей планеты.

Читайте также:  Что такое ЖЕМЧУГ МАЙОРКА: ноу-хау, выбор, звезды

Другие сферы

В качестве иных областей применения урана, прежде всего, необходимо упомянуть изготовление ядерного и термоядерного оружия. Кроме того, карбид урана-235 используется в качестве одного из компонентов топлива реактивных ядерных двигателей.

Также, некоторые соединения урана входят в состав красителей. Они (соединения) в своё время использовались в фотографии для улучшения световых показателей негативов и позитивов.

Месторождения в России и мире

Список крупнейших мировых ураносодержащих месторождений по странам мира:

  • Австралия – 19 месторождений. Крупнейшими из них являются: ОлимпикДан – 3 тыс. тонн добычи ежегодно, Биверли – 1 тыс. тонн., Хонемун – 900 тонн.
  • Казахстан. 16 месторождений. 6 наиболее значимых: Будёновское, Западный Мынкудук, Ирколь, Корсан, Южный Инкай, Харасан.
  • Россия. 7 месторождений. Из них в эксплуатации находятся три: Аргунское, Жерловское, Источное.
  • Канада. Известные урановые залежи на территории этой страны: МакАртур-Ривер, Сигар Лейк и «Проект Уотербери».
  • ЮАР. Месторождение Доминион и рудники: Вааль-Ривер, Вестерн-Ариез, Палабора, Рандфонтейн.
  • Нигер. 12 залежей. Наибольшие: Азелит, Арлит, Имурарен, Мадауэла.
  • Намибия. 4 месторождения.

Мировые запасы

Планетарные запасы урана оцениваются по-разному. Согласно данным Всемирной ядерной ассоциации в 2017 году они составляли 6,1426 млн. тонн.

В других источниках указывается цифра в 5,5 млн. тонн. Хотя, при этом оговаривается, что разведанные запасы составляют 3,3 млн. тонн, а 2,2 – предполагаемые. Ещё не обнаруженные залежи оцениваются в 10,2 млн. тонн. В процентном соотношении урановые запасы размещены следующим образом по странам и континентам:

  • Австралия – 40%.
  • Канада – 15%.
  • Казахстан – 13%.
  • Бразилия – 8%.
  • Южная Африка – 6,5%.

Страны, добывающие уран

Топ мировых стран-добытчиков (всего их насчитывается 14) ядерного топлива в 2018 году:

  • Казахстан – 21,705 тыс. тонн. 41% мировой добычи, составляющей 53,498 тыс. тонн.
  • Канада – 7,001 тыс. тонн. Что составляет 13% от общемирового уровня.
  • Австралия – 6,517 тыс. тонн или 12%.
  • Намибия – 5,525 тыс. тонн.
  • Нигер – 2,911 тыс. тонн.
  • Россия – 2,904 тыс. тонн.
  • Узбекистан – 2,404 тыс. тонн.
  • Китай – 1,855 тыс. тонн.
  • Украина – 1,18 тыс. тонн.
  • США – 582 тонны.
  • Также добычей урана занимаются: Индия – 423 тонн, ЮАР – 346 тонн, Иран – 71 тонна и Пакистан – 45 тонн.

Металлический уран и его свойства

Металлургия урана

Металлический уран и его свойства

Значение металлургии урана, т. е. получения чистейшего (ядерной чистоты) металлического урана, в том, что благода­ря ей за короткое время в различных странах мира (СССР, США, Англия, Франция и др.) было организовано производство ядерного топлива и осуществлена цепная ядерная реак­ция, началось использование ядерной энергии.

В настоящее время масштабы мирового производства урана сравнимы с масштабами производства других цветных и редких металлов, и период наибольшего подъема производ­ства его получали примерно 40000 т ежегодно (без СССР).

Рассмотрим некоторые свойства металлического урана. Уран представляет собой очень тяжелый металл плотностью 19,05 г/см3. По внешнему виду уран напоминает сталь. Све­жеотполированная поверхность его серебристого цвета, но на воздухе она тускнеет и становится сначала золотистой с сине­ватым оттенком, а затем темной, напоминающей свинец.

Металлический уран существует в трех кристаллических модификациях: a-, b-, g-структурах. Низкотемпературная форма урана (a-фаза), стойкая до 662° С, обладает некоторой ковкостью.

Среднетемпературная модификация (b-фаза), устойчивая в пределах от 662 до 769° С, хрупка, а высокотем­пературная (g-фаза), существующая от 769° С до температуры плавления 1130° С, пластична. Кипит уран при 3813° С. Уран — довольно плохой проводник электричества и тепла.

Тепло­проводность урана в 13 раз меньше теплопроводности меди. В интервале температур 20—350° С уран слабо парамаг­нитен.

Основной особенностью a-фазы является ее анизотропность. В b-фазе анизотропные свойства металла выражены намного слабее, чем в a-фазе.

gфаза в противоположность a- и b-фазам характеризуется изотропными свойствами.

Механические свойства урана вследствие его анизотропности существенно за­висят от предварительной механической и термической обра­ботки, а также от содержания примесей, влияющих на раз­меры зерен и их ориентацию.

Некоторые термодинамические характеристики для метал­лического урана приведены в табл. 48.

Таблица 48

Некоторые термодинамические характеристики металлического урана

параметр Значение величины, ккал/моль
Теплота превращения a-фазы в b-фазу 0,68 – 0,71
Теплота превращения b-фазы в g-фазу 1,14 – 1,17
Теплота плавления 4,74 – 4,76
Теплота парообразования
Теплота сублимации
Энтальпия при 250С 1,521
Энтропия при 250С 11,99 кал/(град.моль)

Металлический уран химически очень реакционноспособен. Он легко взаимодействует со всеми неметаллами, а также образует многочисленные интерметаллические соединениясомногими металлами.

Химическая активность урана, особенно его легкая окисляемость, взаимодействие с углеродом, азотом и другими веществами определяют и особенности его металлургии.

Отметим некоторые из них: исходное сырье должно быть ядерно-чистым; применяемый восстановитель должен быть мощным и не загрязняющим уран; материал аппаратуры должен быть инертен по отношению к урану; среда (атмосфера) должна быть также инертна по отношению к урану.

  • ПРОИЗВОДСТВО МЕТАЛЛИЧЕСКОГО УРАНА ИЗ ЕГО ОКИСЛОВ
  • Восстановление различных окислов урана кальцием и магнием описывается уравнениями:
  • UO2 + 2Ca ® U + 2CaO, DH0298 = -46,8 ккал;
  • U3O8 + 8Ca ® U + 8CaO, DH0298 = -122,8 ккал;
  • UO3 + 3Ca ® U + 3CaO, DH0298 = -163,5 ккал;
  • UO2 + 2Mg ® U + 2MgO, DH0298 = -36,2 ккал;
  • U3O8 + 8Mg ® U + 8MgO, DH0298 = -107,5 ккал;
  • UO3 + 8Mg ® U + 3MgO, DH0298 = -146,7 ккал;
  • (DH0 реакций даны на 1 г-атом урана при 00С).

Теплоты реакции во всех случаях достаточно, чтобы перевести металлический уран в расплавленное состояние, но окислы кальция и магния остаются в твердом виде вследствие высокой температуры их плавления, что видно из данных, приведенных в табл. 49.

Таблица 49

РАФИНИРОВОЧНАЯ ПЛАВКА

При восстановительной плавке большинство примесей тетрафторида урана переходит в металлический уран. Например, если в тетрафториде урана содержится 50 млн-1 Fе, то в металле его будет не менее 46 млн-1. Полностью остаются в металле марганец, бор и большинство других примесей.

Вот примерное содержание примесей в черновом металле, полученном после восстановительной плавки, млн-1: С 500, N 500, О 350, Fе 1100, Мg 20, Аl 30, Са 20, Сг 100, Мn 30, Ni 40, Si 100.

Для снижения содержания этих примесей проводят окончательную очистку — рафинировочную плавку. Ее осуществляют обычно в вакуумной печи (индукционной или сопротивления).

В течение 1 ч расплавленный уран выдерживают при 1300—1400° С в вакууме 0,5 мм рт. ст. После этого производят розлив в графитовые или чугунные изложницы, находящиеся также под вакуумом.

Тигли изготовлены из графита, окиси магния или двуокиси урана (рис. 116).

УРАН: описание металла, свойства, сферы применения и месторождения

Механизм удаления примесей неодинаков для различных примесей и зависит от их природы. Более летучие примеси (в данных условиях), такие, как Nа, Са, Мg, испаряются и удаляются при отсасывании вакуум-насосом. В этом случае потери урана ничтожны.

Однако примеси, летучесть которых невелика и сравнима с летучестью урана (например, Аl, Fe, Si, Ni), при этом не удаляются. Здесь на помощь приходят процессы шлакообразования и ликвации.

Шлаковые включения: окислы, карбиды, нитриды, оксикарбонитриды, нерастворимые в расплавленном уране соединения, всплывают в верхний слой шлака, так как плотность их намного меньше плотности расплавленного урана.

Условие хорошего отделения примесей — отсутствие перемешивания и возможно более низкая температура при выдержке, приближающаяся к температуре плавления урана. В этих условиях в результате целого ряда реакций образуются термодинамически устойчивые соединения, например:

  1. для окислов UO2 + 2Mg ® U + 2MgO, 3MgO + 3La ® 3Mg + La2O3;
  2. для карбидов UC + Si ® U + SiC, CaC2 + 2U ® Ca + UC;
  3. для нитридов U2N3 + 3Zr ® 3ZrN + 2U.
  4. Некоторые примеси реагируют с материалом тигля (UO2)
  5. Th + UO2 ® ThO2 + U;
  6. 4Ce + 3UO2 ® 2Ce2O3 + 3U.

В результате этих превращений содержание примесей может понизиться: для С – в 4-6 раз, для N – в 6-10 раз, для Sr, РЗЭ, Cs – в 100 раз, для Те – в 10 раз (табл. 54).

  • Таблица 54
  • Содержание примесей в слитке урана после рафинировочной плавки
  • (r=18,98 г/см3)
элемент Содержание, млн-1 элемент Содержание, млн-1 элемент Содержание, млн-1
C

Оставьте комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector