ТИТАН: описание металла, свойства, сферы применения и месторождения

ТИТАН: описание металла, свойства, сферы применения и месторождения

Брусок кристаллического титана

Титан — лёгкий прочный металл серебристо-белого цвета.

Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C.

Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

СТРУКТУРА

ТИТАН: описание металла, свойства, сферы применения и месторождения

Кристаллическая структура кристалла

Титан имеет две аллотропические модификации. Низкотемпературная модификация, существующая до 882 °C, имеет гексагональную плотноупакованную решетку с периодами а = 0,296 нм и с = 0,472 нм.

Высокотемпературная модификация имеет решетку объемноцентрированного куба с периодом а = 0,332 нм.

Полиморфное превращение (882 °C) при медленном охлаждении происходит по нормальному механизму с образованием равноосных зерен, а при быстром охлаждении — по мартенситному механизму с образованием игольчатой структуры.

Титан обладает высокой коррозионной и химической стойкостью благодаря защитной окисной пленке на его поверхности. Он не корродирует в пресной и морской воде, минеральных кислотах, царской водке и др.

СВОЙСТВА

ТИТАН: описание металла, свойства, сферы применения и месторождения

Кристаллы титана

Точка плавления 1671 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере.

Применяемый в промышленности технический титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С.

Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см3, предел прочности 300-550 Мн/м2 (30-55кгс/мм2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м2 (115-165 кгс/мм2). Является парамагнетиком. Конфигурация внешней электронной оболочки атома Ti 3d24s2.

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной). Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.

Запасы и добыча

ТИТАН: описание металла, свойства, сферы применения и месторождения

Кристаллы титана

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т.

На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т.

Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана их при 850 °C восстанавливают магнием.

Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков.

ПРОИСХОЖДЕНИЕ

ТИТАН: описание металла, свойства, сферы применения и месторождения

Титановая руда

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т.

В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках.

Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан.

Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.

Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%).

ПРИМЕНЕНИЕ

ТИТАН: описание металла, свойства, сферы применения и месторождения

Изделия из титана

Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах.

Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%.

Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

Технический титан из-за недостаточно высокой теплопрочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении.

Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т.п.

Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей).

В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.

Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.

Титан (англ. Titanium) — Ti

КЛАССИФИКАЦИЯ

Физические свойства

Оптические свойства

Кристаллографические свойства



Особенности титана как металла с превосходной коррозийной стойкостью

ТИТАН: описание металла, свойства, сферы применения и месторождения

Наиболее значимыми для народного хозяйства были и остаются сплавы и металлы, объединяющие легкость и прочность. Титан относится именно к этой категории материалов и, кроме того, обладает превосходной коррозийной стойкостью.

Титан – переходный металл 4 группы 4 периода. Молекулярная масса его составляет всего 22, что указывает на легкость материала. При этом вещество отличается исключительной прочностью: среди всех конструкционных материалов именно у титана самая высокая удельная прочность. Цвет серебристо-белый.

Что такое титан, расскажет видео ниже:

Титан довольно распространен – по содержанию в земной коре занимает 10 место. Однако выделить действительно чистый металл удалось лишь в 1875 году. До этого вещество либо получали с примесями, либо называли металлическим титаном его соединения. Эта путаница привела к тому, что соединения металла стали использоваться значительно раньше, чем сам металл.

Обусловлено это особенностью материала: самые ничтожные примеси заметно влияют на свойства вещества, порой полностью лишая присущих ему качеств.

Так, самая небольшая доля других металлов лишает титан жаропрочности, что является одним из его ценных качеств. А небольшая добавка неметалла превращает прочный материал в хрупкий и непригодный к применению.

Эта особенность сразу же разделила получаемый металл на 2 группы: технический и чистый.

  • Первый применяют в тех случаях, когда более всего нужна прочность, легкость и коррозийная стойкость, так как последнее качество титан не теряет никогда.
  • Материал большой чистоты используется там, где нужен материал, работающий при очень больших нагрузках и больших температурам, но при этом отличающийся легкостью. Это, конечно, авиа- и ракетостроение.

Вторая особая черта вещества – анизотропность. Некоторые его физические качества изменяются в зависимости от приложения сил, что необходимо учитывать при применении.

При нормальных условиях металл инертен, не корродирует ни в морской воде, ни в морском или городском воздухе. Более того, это самое биологически инертное вещество из известных, благодаря чему в медицине широко применяются титановые протезы и имплантаты.

В то же время при повышении температуры он начинает реагировать с кислородом, азотом и даже водородом, а в жидком виде впитывает газы. Эта неприятная особенность крайне затрудняет и получение самого металла, и изготовление сплавов на его основе.

Последнее возможно только при использовании вакуумной аппаратуры. Сложнейший процесс производства превратил довольно распространенный элемент в весьма дорогостоящий.

Связь с другими металлами

ТИТАН: описание металла, свойства, сферы применения и месторождения

  • механическая прочность титана в 2 раза выше, чем у железа, и в 6 раз, чем у алюминия. При этом прочность при снижении температуры возрастает;
  • коррозийная стойкость намного выше, чем у железа и даже алюминия;
  • при нормальной температуре титан инертен. Однако при повышении до 250 С, начинает поглощать водород, что сказывается на свойствах. По химической активности он уступает магнию, но, увы, превосходит железо и алюминий;
  • металл намного слабее проводит электричество: его удельное электросопротивление выше, чем у железа 5 раз, выше, чем у алюминия в 20 раз, и выше, чем у магния в 10 раз;
  • теплопроводность также намного ниже: меньше, чем 1 железа в 3 раза, и меньше, чем у алюминия в 12 раз. Однако это свойство обуславливает очень низкий коэффициент температурного расширения.
Читайте также:  МОЛИБДЕН: описание металла, свойства, сферы применения и месторождения

Плюсы и минусы

На деле недостатков у титана множество. Но сочетание прочности и легкости настолько востребовано, что ни сложный способ изготовления, ни необходимость исключительной чистоты не останавливают потребителей металла.

К несомненным плюсам вещества относятся:

  • низкая плотность, что означает очень небольшой вес;
  • исключительная механическая прочность как самого металла титан, так и его сплавов. При повышении температуры титановые сплавы превосходят все сплавы алюминия и магния;
  • соотношение прочности и плотности – удельная прочность, достигает 30–35, что почти в 2 раза выше, чем у лучших конструкционных сталей;
  • на воздухе титан подлежит покрытию тонким слоем оксида, который и обеспечивает превосходную коррозийную стойкость.

Недостатков у металла тоже хватает:

  • стойкость к коррозии и инертность относится только к продукции с неактивной поверхностью. Титановая пыль или стружка, например, самовоспламеняются и сгорают с температурой в 400 С;
  • очень сложный способ получения металла титан обеспечивает очень высокую стоимость. Материал намного дороже железа, алюминия или меди;
  • способность впитывать атмосферные газы при повышении температуры требует применения при плавке и получении сплавов вакуумной аппаратуры, что тоже заметно увеличивает стоимость;
  • титан отличается плохими антифрикционными свойствами – на трение он не работает;
  • металл и его сплавы склонны к водородной коррозии, предотвратить которую сложно;
  • титан плохо поддается обработке резанием. Сварка его тоже затруднена из-за фазового перехода во время нагревания.

Далее рассмотрены состав и структура титана.

Лист титана (фото)

ТИТАН: описание металла, свойства, сферы применения и месторождения

Свойства и характеристики

Физические качества вещества сильно зависят от чистоты. Справочные данные описывают, конечно, чистый металл, но характеристики технического титана могут заметно отличаться.

  • Плотность металла уменьшается при нагревании от 4,41 до 4,25 г/куб см. Фазовый переход изменяет плотность лишь на 0,15%.
  • Температура плавления металла – 1668 С. температуру кипения – 3227 С. Титан является тугоплавким веществом.
  • В среднем предел прочности на растяжение составляет 300–450 МПа, однако это показатель можно увеличить до 2000 МПА, прибегнув к закалке и старению, а также введению дополнительных элементов.
  • По шкале НВ твердость составляет 103 и это не предел.
  • Теплоемкость титана невелика – 0,523 кдж/(кг·К).
  • Удельное электросопротивление — 42,1·10-6 ом·см.
  • Титан является парамагнитом. При снижении температуры его магнитная восприимчивость уменьшается.
  • Металлу в целом свойственны пластичность и ковкость. Однако на эти свойства сильно влияют кислород и азот в сплаве. Оба элемента придают материалу хрупкость.

Вещество устойчиво ко многим кислотам, включая азотную, серную в низкой концентрации и практически все органические за исключением муравьиной. Это качество обеспечивает титану востребованность в химической, нефтехимической, бумажной промышленности и так далее.

Структура и состав

Титан – хоть и переходный металл, да и удельное электросопротивление имеет низкое, все же, является металлом и проводит электрический ток, а это означает упорядоченную структуру. При нагревании до определенной температуры структура изменяется:

  • до 883 С устойчивой является α-фаза с плотностью в 4,55 г/куб. см. Она отличается плотной гексагональной решеткой. Кислород растворяется в этой фазе с образованием растворов внедрения и стабилизирует α-модификацию – отодвигает температурный предел;
  • выше 883 С стабильна β-фаза с объемно-центрированной кубической решеткой. Плотность его несколько меньше – 4,22 г/куб. см. Эту структуру стабилизирует водород – при его растворении в титане также образуются растворы внедрения и гидриды.

Эта особенность очень затрудняет работу металлурга. Растворимость водорода при охлаждении титана резко уменьшается, и в сплаве выпадает гидрид водорода – γ-фаза.

Он становится причиной появления холодных трещин при сварке, поэтому производителям приходится применять дополнительные усилия после плавки металла, чтобы очистить его от водорода.

  • О том, где можно найти и как сделать титан, расскажем ниже.
  • Данное видео посвящено описанию титана как металла:

Титан весьма распространен, так что с рудами, содержащими металл, причем в довольно больших количествах, затруднений не возникает. Исходным сырьем выступает рутил, анатаз и брукит – диоксиды титана в разной модификации, ильменит, пирофанит – соединения с железом, и так далее.

А вот технология плавки титана сложна и требует дорогостоящей аппаратуры. Способы получения несколько отличаются, поскольку состав руды различен. Например, схема получения металла из ильменитовых руд выглядит так:

  • получение титанового шлака – породу загружают в электродуговую печь вместе с восстановителем – антрацитом, древесным углем и прогревают до 1650 С. При этом отделяют железо, которое идет на получение чугуна и диоксида титана в шлаке;
  • шлак хлорируют в шахтных или солевых хлораторах. Суть процесса сводится к тому, чтобы перевести твердый диоксид в газообразный тетрахлорид титана;
  • в печах сопротивления в специальных колбах металл восстанавливают натрием или магнием из хлорида. В итоге получают простую массу – титановую губку. Это технический титан вполне пригодный для изготовления химической аппаратуры, например;
  • если же требуется более чистый металл, прибегают к рафинированию – при этом металл реагирует с йодом с тем, чтобы получить газообразный йодид, а последний под действием температуры – 1300–1400 С, и электрического тока, разлагается, высвобождая чистый титан. Электрический ток подается через натянутую в реторте титановую проволоку, на которую и осаждается чистое вещество.

Чтобы получить титан в слитках, титановую губку переплавляют в вакуумной печи, чтобы предотвратить растворение водорода и азота.

Цена титана за 1 кг очень высока: в зависимости от степени чистоты металл стоит от 25 до 40 $ за 1 кг. С другой стороны, корпус кислотоупорного аппарата из нержавеющей стали обойдется в 150 р. и прослужит не более 6 месяцев. Титановый будет стоить около 600 р, но эксплуатируется в течение 10 лет. Много производств титана есть в России.

ТИТАН: описание металла, свойства, сферы применения и месторожденияВлияние степени очистки на физико-механические качества заставляет рассматривать применение титана именно с этой точки зрения. Так, технический, то есть, не самый чистый металл обладает превосходной коррозийной стойкостью, легкостью и прочностью, что и обуславливает его применение:

  • химическая промышленность – теплообменники, трубы, корпуса, детали насосов, арматура и так далее. Материал незаменим на участках, где требуется стойкость к кислотам и прочность;
  • транспортная промышленность – вещество используется для изготовления средств передвижения от железнодорожных составов до велосипедов. В первом случае, металл обеспечивает меньшую массу составов, что делает тягу более эффективной, в последнем – придает легкость и прочность, не зря ведь титановая велосипедная рама считается лучшей;
  • военно-морское дело – из титана изготавливают теплообменники, выхлопные глушители для подводных лодок, клапан, пропеллеры и так далее;
  • в строительстве широко применяют цинк-титан – прекрасный материал для отделки фасадов и кровель. Вместе с прочностью сплав обеспечивает еще одно важное для архитектуры достоинство – возможность придавать изделиям самую причудливую конфигурацию, способность к формообразованию у сплава неограниченная.

Чистый металл, кроме того, является очень стойким к высоким температурам и сохраняет при этом прочность. Применение очевидно:

  • ракето- и авиастроение – из него изготавливают обшивку. Детали двигателей, элементы крепления, части шасси и так далее;
  • медицина – биологическая инертность и легкость делает титан куда более перспективным материалом при протезировании, вплоть до сердечных клапанов;
  • криогенная техника – титан является одним из немногих веществ, которые при снижении температуры становятся лишь прочнее и не утрачивает пластичности.

Титан – конструкционный материал самой высокой прочности при такой легкости и пластичности. Эти уникальные качества обеспечивают ему все более важную роль в народном хозяйстве.

О том, где взять титан для ножа, расскажет видео ниже:

Сферы и области применения титана

ТИТАН: описание металла, свойства, сферы применения и месторождения

Титан – уникальный металл. Свойства этого материала делают его незаменимым во многих сферах человеческой жизни. Титан стал известен более двухсот лет назад и с тех пор не теряет своей популярности. Это один из самых распространённых элементов в периодической таблице Менделеева. Чтобы доказать это, мы подробно рассмотрим сферы и области применения титана.

Свойства и характеристики титана

Титан может похвастаться весьма выгодным набором различных свойств. К ним можно отнести:

  • стойкость к механическому воздействию;
  • стойкость к коррозии;
  • высокие прочностные показатели;
  • высокая температура плавления;
  • показатели плотности выше чем у алюминия;
  • теплопроводимость ниже чем у алюминия и железа;
  • титан можно использовать в большом диапазоне температур.
  • Перечисленные свойства титана говорят о том, что его можно применять в самых различных целях. Именно об этом и мы и поговорим более подробно. Сперва, стоит отметить, что титан имеет не только различные свойства и характеристики, но и марки.

    Марки титана

    Титан имеет достаточно большое количество различных марок. Каждая марка имеет разное содержание химических элементов и примесей, таких как азот, кремний, кислород, железо и другие. Возьмем, к примеру, марки титана ВТ1-0 и ВТ1-00.

    Титан данных марок используется в технических целях, так как имеет сравнительно небольшую прочность из-за низкого количества примесей в своем составе. То есть состав определенной марки титана влияет на его свойства и качественные показатели.

    Где применяют титан?

    Первоначально титан использовался преимущественно в военной промышленности, но со временем его стали активно применять и в других сферах, таких как:

  • энергетическая промышленность. Сплавы титана нашли свое применение в производстве теплообменного оборудования, различных труб, а также в качестве их покрытий.
  • химическая и нефтехимическая промышленность. Листы из титана используют для производства различных деталей химического и нефтехимического оборудования.
  • пищевая промышленность. Для оборудования данной отрасли ставят очень высокие требования, а титановые сплавы соответствуют им. Из этого металла делают центрифуги, мерные цистерны, фильтры, сосуды и другое оборудование для пищевой отрасли.
  • целлюлозная промышленность. Этой отрасли характерны весьма сложные процессы, которые требуют материалы с высокими качественными показателями. К таким материалам относят титан.
  • автомобильная промышленность. Доказано, что чем меньше масса автомобиля, тем меньше расход топлива. Тем самым повышается его экономичность и экологичность. Небольшая масса титана позволяет снизить массу деталей автомобилей.
  • декоративно – прикладное искусство. Титан хорошо обрабатывается, тем самым позволяет использовать себя для изготовления различных украшений, скульптур, памятников. К примеру, из титана делают серьги для пирсинга. Их можно использовать для первичных проколов, так как титан не вызывает аллергических реакций.
  • Читайте также:  КОРОЛЕВСКИЙ ЯНТАРЬ: почему за него платят 1.500 usd

    Применение титана в строительстве

    Такие свойства как прочность, стойкость к коррозии, химическим веществам, атмосферным осадкам, ультрафиолетовым лучам и другим неблагоприятным факторам внешней среды позволяют использовать титан в строительстве.

    Титан, как строительный материал, популярен во многих странах мира. Например, в восточных странах титан используют в качестве кровельного материала. Очень часто здания облицовывают титаном из-за его выгодных свойств и в других странах мира.

    Также титаном облицовывают карнизы, колонны и другие элементы зданий.

    Этот цветной металл, на протяжении многих лет, зарекомендовал себя как надежный и долговечный материал. Сферы и области применения титана очень обширны и благодаря своим уникальным свойствам, данный металл называют «металлом будущего». Нет и капли сомнения, что титан не утратит своей популярность даже через много лет.

    Металл титан

    Калькулятор металлопроката С высоким эл. сопротивлением

    Титан обладает высокой прочностью, хорошей коррозионной стойкостью и при этом имеет сравнительно небольшую массу, что делает его применение незаменимым в областях, где важны хорошие механические свойства изделий одновременно с их массой. На странице представлено описание данного металла: физические, химические свойства, области применения, марки и его сплавов, виды продукции.

    Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Данный материал сочетает легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

    Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

    В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа. Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления. По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью. Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает. Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

    Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

    Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

    Физические и механические свойства

    Свойство Титан
    Атомный номер 22
    Атомная масса 47,00
    Плотность при 20°С, г/cм3 4,505
    Температура плавления, °С 1668
    Температура кипения, °С 3260
    Скрытая теплота плавления, Дж/г 358
    Скрытая теплота испарения, кДж/г 8,97
    Теплота плавления, кДж/моль 18,8
    Теплота испарения, кДж/моль 422,6
    Молярный объем, см³/моль 10,6
    Удельная теплоемкость при 20°С, кДж/(кг·°С) 0,54
    Удельная теплопроводность при 20°С, Вт/(м·К) 18,85
    Коэффициент линейного термического расширения при 25°С, 10-6 м/мК 8,15
    Удельное электросопротивление при 20°С, Ом·см·10-6 45
    Модуль нормальной упругости, гПа 112
    Модуль сдвига, гПа 41
    Коэффициент Пуассона 0,32
    Твердость, НВ 130…150
    Цвет искры Ослепительно-белый длинный насыщенный пучок искр
    Группа металлов Тугоплавкий, легкий металл

    Химические свойства

    Свойство Титан
    Ковалентный радиус: 132 пм
    Радиус иона: (+4e) 68 (+2e) 94 пм
    Электроотрицательность (по Полингу): 1,54
    Электродный потенциал: — 1,63
    Степени окисления: 2, 3, 4

    Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св.

    В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо.

    Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С.

    Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства.

    Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку.

    Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С.

    Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий. Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С.

    Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность.

    Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью.

    Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.

      Достоинства:

    • малая плотность (4500 кг/м3) способствует уменьшению массы выпускаемых изделий;
    • высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
    • необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
    • удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
      Недостатки:

    • высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
    • активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
    • трудности вовлечения в производство титановых отходов;
    • плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
    • высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
    • плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
    • большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.
    Читайте также:  КАМЕНЬ ДЕВЫ: ТОП-21 талисманов для денег и любви

    Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах. По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии. Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях. Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж. Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести. Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении. Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла.

    Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика.

    Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов.

    Нитрид (TiN) применяется для покрытия инструментов.

    Основными видами продукции, которые выпускает промышленность, являются листы и плиты, прутки и круги, титановые трубы, титановая проволока и нить. Вся перечисленная продукция применяется в областях, в которых предъявляются повышенные требования к массе изделий и одновременно к их коррозионной стойкости и прочностным характеристикам.

    Титан — общая характеристика и свойства химического элемента

    Титан (Ti) один из металлов периодической системы Дмитрия Ивановича Менделеева. Нашел широкое применение в промышленности, благодаря свои свойствам. В дальнейшем был адаптирован под бытовые потребности, как вещество, обеспечивающее длительный срок службы изделий.

    История открытия

    Явление нового элемента связано с именами Грегора и Клапрота. Оба выделили его практически одновременно 1791 и 1795 гг. соответственно. 

    Мартин Генрих Клапрот

    В 1805 г. был выделен вновь Вокленом из анатаза. При этом чистый титан был получен в Голландии более чем через век после выделения.

    Происхождение названия

    Свое наименование получил вследствие сравнения с титанами в древнегреческой мифологии М. Клапротом. При этом исследователь не был знаком в полной мере со свойствами элемента, на тот момент они практически не известны. 

    При этом представители французской школы пытались найти название, соответствующее характеристикам металла. Однако Мартин остановился на мифологии (как было ранее с ураном).

    Нахождение в природе

    В природе титан представлен в виде соединений с кислородом. Чистые формы не встречаются. 

    Под влиянием метеорологических условий по строению приближается к корунду (соединению алюминия с кислородом). Его обнаруживают в морской глине, в алюминиевых рудах с железом и кремнием.

    Титан представлен в минералах: титанит, титаномагнетит, рутил. Известны австралийские, бразильские, канадские месторождения последнего. Минерал представлен в виде букрита и анатаза. 

    Широко встречаемым минералом служит титанат железа (ильменит). Крупные месторождения представлены в России, Северной Америке.

    Крупные месторождения

    Лидирующее место занимает Китай, далее следует Российская Федерация, Северная Америка (Канада). Самое крупное месторождение, где добывают титан в РФ, расположено на территории республики Коми и называется Ярегское нефтяное месторождение.

    В десятку стран лидеров по добыче титана входят:

    • США;
    • Индия;
    • Австралия;
    • ЮАР;
    • Швеция;
    • Норвегия;
    • Южная Корея.

    Мировые запасы и производство титана

    Представленные в Канаде около 1/5 мировой добычи приходится на ильменитовые руды. В Китае 1/10 часть выпуска обеспечивается месторождением Лак-Тико. 

    РФ производит меньше 1% титанового концентрата. Однако месторождение в Коми признано вторым по масштабу после Китая. Также лопаритовые руды экспортируются преимущественно Россией (Ловозерск). Последние используют в производстве редкоземельных металлов (в том числе титана).

    Получение титана

    Источник металла – диоксид титана. Его образование происходит в процессе переработки ильменита. В результате образуется титановый шлак, который подвергается дальнейшей переработке. К концентрату добавляют серную кислоту, на выходе образуется двуокись титана. 

    Другой способ заключается в соединении с углеродом (кокс), хлором и дальнейшим нагреванием в присутствии магния.

    Также применяют восстановление кальцием диоксида титана. Последний процесс заключается в проведении электрического тока, что ведет к разложению оксида кальция (кислород на аноде и собственно кальций). 

    Кислород выступает в роли окислителя, кальций, будучи металлом, переходит к катоду, попутно восстанавливая титан. Процесс происходит несколько раз. Исходом реакции служит титановая губка, требующая очищения.

    Физические свойства

    Элемент расположен в четвертой группе в системе Д. И. Менделеева, под номером 22. В соединении атом обладает валентностью (II). Электронная конфигурация представлена формулой: [Ar] 3d24s2.

    Вес атома (масса) около 47,9 а.е.м. Переход альфа титана в бета титан происходит при температуре 8830С. Теплота плавления 18,8 кДж/моль. Подвергается кипению при 31800С. Обладает теплопроводностью, составляющей 22,09 Вт/(м*К).

    Титан обладает высокой ковкостью, пластичностью, низкой твердостью. Однако сплавы, содержащие титан, относятся к высокотвердым, но хрупким соединениям.

    Серебристое вещество, по строению относится к металлам, имеет голубоватый оттенок. Обладает низкой плотностью. Высокая температура плавления (16700С).

    В соединениях Ti способен проявить степень окисления (+2) (Ti+2H2, Ti+2O, Ti+2(OH)2, Ti+2F2, Ti+2Cl2, Ti+2Br2), (+3) (Ti+32O3, Ti+3(OH)3, Ti+3F3, Ti+3Cl3, Ti+32S3) и (+4) (Ti+4F4, Ti+4H4, Ti+4Cl4, Ti+4Br4).

    Химические свойства

    Устойчив к коррозии, по свойствам приближается хромоникелевой стали. Последнее обусловлено пленкой, образуемой на его поверхности. Воздух не меняет механических свойств. 

    При нагревании свыше 6000С металл становится хрупким, усиливается поглощение кислорода. При нагревании более 9100С взаимодействует с газообразными соединениями углерода, реабсорбирует азот.

    При присоединении водорода, титан приобретает «водородную хрупкость». Данный эффект проявляется повышенной ломкостью при перепадах напряжения. Устойчив в кислотах.

    Использование титана и его сплавов

    Выделяют несколько технических сплавов с разной маркировкой ВТ1-00; ВТ1-0. В состав обоих входят:

    • углерод;
    • кислород;
    • азот;
    • водород;
    • железо;
    • кремний.

    Однако в первом содержание представленных элементов выше, что обусловливает его преимущества перед ВТ1-0.

    При легировании молибденом, ванадием, железом, повышается стабильность титана (или устойчивость) к температурным воздействиям. При добавлении алюминия, напротив, происходит снижение — это используют в промышленности, увеличивая диапазон химических превращений титана.

    Используется в ракетном строительстве. На основе Ti изготавливают обшивку, различные агрегаты. Осуществляется производство компрессоров двигателей, цистерн для хранения. Титан нашел применение в самолетостроении, поскольку замедляет разрушение приборов.

    Низкая теплопроводность позволила использовать его для изготовления противопожарных перегородок. В судостроении он предупреждает коррозию в морской воде.

    В таблице представлены сведения о применении титана в зависимости от его свойств.

    Высокая коррозионная сопротивление Трубы, теплообменники, реакторы
    Низкий модуль упругости относительно стали Пружины, тяги в машиностроении
    Легкость, низкий иммунный ответ Протезирование в медицине
    Сохранение цвета Бытовые предметы, оправы, рамки
    Долговечность Фасад, декор зданий, создание монументов, порошки, краски
    Сплавы титана: превосходят по удельной прочности сталь Создание стали для брони

    Заключение

    Титан, выделенный в чистом виде в 1925 году, нашел широкое применение в современном мире. Это обусловлено легкостью и прочностью металла. Однако трудности выделения и высокие затраты требуют дальнейшей разработки этого полезного ископаемого.

    Оставьте комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *